Erratum

Ian J. Laurenzi *

Department of Chemical Engineering, Lehigh University, B330 Iacocca Hall, 111 Research Drive, Bethlehem, PA 18018, United States

Lushnikov’s population balance equation describing the aggregation of particles composed of at most two-components is [1]

\[
\frac{d\tilde{c}(u, v; t)}{dt} = \frac{1}{2} \int_0^u \int_0^v K(u', v'|u - u', v - v') \tilde{c}(u', v'; t) \tilde{c}(u - u', v - v'; t) dv'du' - \tilde{c}(u, v; t) \int_0^\infty \int_0^\infty K(u, v|u', v') \tilde{c}(u', v'; t) dv'du' - \tilde{c}(u, v; t) \int_0^\infty \int_0^\infty K(u, v|u', v') \tilde{c}(u', v'; t) dv'du'.
\]

(1)

In the published paper [2], a solution for the special case where \(K(u, v|u', v') = \beta = \text{const.}\) was presented, subject to the initial distribution corresponding to a mixture of two populations of homogeneous particles, each exponentially distributed in size

\[
\tilde{c}(u, v; 0) = c_1 \lambda_1 e^{-\lambda_1 u} \lambda_2 \delta(\lambda_2 v) + c_2 \lambda_2 e^{-\lambda_2 v} \lambda_1 \delta(\lambda_1 u).
\]

(2)

Although the cumulative distribution \(G(u, v; t) = \int_0^u \int_0^v \tilde{c}(u, v; t) dv du\) presented as Eq. (54) is correct as written, the solution for the concentration density function presented as Eq. (A.6) has a typographical error. The correct expression is

\[
\tilde{c}(u, v; T) = \frac{4c_0 \lambda_1 \lambda_2}{(2 + T)^2} \left\{ x_1 \delta(\lambda_2 v) e^{-\lambda_1 x_1 u} + x_2 \delta(\lambda_1 u) e^{-\lambda_2 x_2 v} + 2x_1 x_2 \Theta I_0 \left(2\Theta \sqrt{x_1 x_2 \lambda_1 \lambda_2 u v} \right) \right. \\
+ x_1 x_2 \Theta e^{-\lambda_1 x_1 u - \lambda_2 x_2 v} \left[\left(\frac{x_2 \lambda_2 v}{x_1 \lambda_1 u} + \frac{x_1 \lambda_1 u}{x_2 \lambda_2 v} \right) \times I_1 \left(2\Theta \sqrt{(x_1 \lambda_1 u)(x_2 \lambda_2 v)} \right) \right) \right\},
\]

(3)

where

DOI of original article: 10.1006/jcph.2002.7017.

* Tel.: +1 610 428 8964; fax: +1 610 758 5057.

E-mail addresses: ian.laurenzi@gmail.com, ian.laurenzi@lehigh.edu.
\[\Theta = \frac{T}{2 + T}, \]
\[v_i = 1 - \Theta x_i, \quad i = 1, 2, \]
\[x_i = \frac{c_i}{c_0}, \quad i = 1, 2, \]
\[c_0 = c_1 + c_2, \]
\[T = c_0 \beta t \]

and \(I_\nu(x) \) is the modified Bessel function \([3]\). In the published paper, the factors of \(\Theta \) multiplying the modified Bessel functions were absent. Note that Eq. (3) reverts to Eq. (2) as \(T \to 0 \), as one would expect.

Finally, there is a typo on p. 432, Eq. (45) should read
\[c(m, n, t) = \binom{m + n}{n} \left(\frac{c_1}{c_0} \right)^m \left(\frac{c_2}{c_0} \right)^n c(m + n, t), \quad c_0 = c_1 + c_2. \]

All results presented in the published paper employ the (correct) expressions presented here.

References